DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR SIGNAL GENERATOR AGILENT, MODEL E4433B

Headquarters, Department of the Army, Washington, DC

5 July 2005

Distribution Statement A: Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, US Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found the back of this manual. For the World Wide at Web. use: https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	3
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment setup	7	4
		Line stability	8	5
		Frequency accuracy	9	6
		RF output	10	7
		Spectral purity	11	9
		Pulse modulation	12	11
		Amplitude modulation	13	13
		Frequency modulation	14	14
		Phase modulation	15	15
		Final procedure	16	16

SECTION I IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This bulletin provides instructions for the calibration of Signal Generator, Agilent, Model E4433B. The manufacturer's manual was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.

a. Model Variations. None.

b. Time and Technique. The time required for this calibration is approximately 4 hours, using the dc and low frequency and microwave technique.

2. Forms, Records, and Reports. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.

3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Test instrument parameters	Performance specifications			
Frequency	Range: 250 kHz to 4 GHz			
	Accuracy: <u>+</u> 0.1 PPM			
	Line stability: ± 0.1 PPM, $\pm 5\%$, -10% line change ¹			
RF output	Range: 13 to -136 dBm ²			
	Accuracy: <u>+</u> 0.5 dB (250 kHz to 2 GHz)			
	<u>+</u> 0.9 dB (2 GHz to 4 GHz)			
Spectral purity	Harmonics range: Accuracy:			
	250 kHz to 4 GHz \leq +4 dBm, <-30 dBc			
	Spurious signal range: Accuracy:			
	250 kHz to 4 GHz <-65 dBc			
Pulse modulation	Pulse on/off ratio: Accuracy			
	$\leq 3 \text{ GHz}$ >80 dB			
	> 3 GHz > 60 dB			
Amplitude modulation	Frequency range: 250 kHz to 4 GHz			
	Depth: 0 to 100%			
	Accuracy: $< \pm (6\% \text{ of setting } + 1\%)$			
	Distortion: < 1.5%, (30% depth, 1 kHz rate)			
Frequency modulation	Frequency response: dc/20 Hz to 100 kHz			
	Deviation Accuracy: $< \pm (3.5\% \text{ of FM deviation} + 20 \text{ Hz})$			
	Distortion: < 1%			
Phase modulation	Deviation accuracy: $< \pm (5\% \text{ of deviation} + 0.01 \text{ radians})$			
	(1 kHz rate, normal BW mode)			
	Distortion: < 1% (1 kHz rate, normal BW mode)			

Table 1. Calibration Description

 $^1\!\mathrm{Line}$ stability verified to +5%, –8.7% line change.

 2 Range verified +7 dBm to -110 dBm.

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287 or AN/GSM-705. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment is shown in parenthesis.

5. Accessories Required. The accessories required for the calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure.

		Manufacturer and model
Common name	Minimum use specifications	(part number)
AUDIO ANALYZER	Distortion capability: $\leq .25\%$	Boonton, Model 1121 (1121)
	Range: 20 Hz to 10 kHz	
AUTOTRANSFORMER	Range: 105 to 125 V ac	Ridge, Model 9020A
	Accuracy: <u>+</u> 1%	(9020A)
FREQUENCY	Range: 0 Hz to 300 MHz	Fluke, Model PM6681/656
COUNTER	Accuracy: + 0.025 ppm	(PM6681/656)
MEASURING RECEIVER	Power measurement: (+7 dB to -110 dB) ± 0.125 dB	Hewlett-Packard, Model 8902A w/sensors, Hewlett-Packard, Model 11722A (11722A) and 11792A (11792A), and microwave converter,
		model 11793A (11793A), and signal generator, Anritsu, Model 68369NV (68369NV)
MICROWAVE	Range: 300 MHz to 4 GHz	Hewlett-Packard, Model 5352B-
FREQUENCY	Accuracy: ± 0.025 ppm	001 (5352B-001)
COUNTER	A 11. 1 # 37	
PULSE GENERATOR	Amplitude: 5 V Deviad: 10 ma to 20 up	LeCroy, Model 9210 (9210) w/plug-ins,
	Width: $5 \text{ ms to } 6 \text{ us}$	(9215) (MIS-45839)
SPECTRUM ANALYZER	$\begin{array}{c} \text{Range:} 250 \text{ kHz to 4 GHz (13 to -80 dB)} \end{array}$	(3219) (MIS-45003) (AN/USM-677)
	Accuracy: $\pm 1.0 \text{ dB}/10 \text{ dB}$ step.	
1.0 dB maximum		
TIME/FREQUENCY	Range: 1 MHz	Datum , Model ET6000-75
WORKSTATION	Accuracy: 5 parts in 10^9	(13589305)

Table 2. Minimum Specifications of Equipment Required

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.

b. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.

c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual for this TI.

d. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Before connecting TI, the protective earth terminal of the instrument must be connected to the protective conductor of the line power cord. The line plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding of a one conductor to a two conductor outlet is not sufficient protection.

NOTE

When indications specified in this procedure are not within tolerance, perform the power supply check prior to making adjustments.

NOTE

Throughout this procedure soft keys are identified by the use of brackets [] around the key.

- a. Connect TI to autotransformer.
- **b**. Connect autotransformer to a 115 V ac source and adjust autotransformer to 115 V ac.

- c. Press TI **o** pushbutton to on and allow at least 45 minutes for TI to stabilize.
- d. Connect equipment as shown in figure 1.

Figure 1. Internal oscillator equipment setup.

e. Set frequency counter controls to measure frequency with 50 Ω input.

f. On TI press Preset, Utility, [Instrument Adjustments], [Reference Oscillator Adjustment], [Ref Osc Fine].

g. Set the fine tuning DAC for 128.

h. Press TI **[Ref Osc Course]** and adjust course tuning DAC for a counter display as close as possible 10 MHz.

i. Press TI [Ref Osc Fine] and adjust fine tuning DAC for a counter display of $10 \text{ MHz} \pm 0.1 \text{ Hz}$.

j. Press TI [Store Ref Osc Setting], [Confirm Store].

k. Disconnect equipment setup.

8. Line Stability

a. Performance Check

- (1) Connect frequency counter input A to TI RF OUTPUT 50 Ω .
- (2) Set frequency counter controls to measure frequency with 50 Ω input.
- (3) Press TI pushbuttons as listed in (a) through (d) below:
 - (a) **Preset**.
 - (b) **Frequency**, **1**, **0**, **0**, **[MHz]**.
 - (c) Amplitude, 0, [dBm].
 - (d) $RF\ On/Off$ to on.
- (4) Record frequency counter indication.

(5) Vary autotransformer to 120 V ac. Frequency counter will indicate within ± 0.2 Hz of recorded value in (4) above.

(6) Vary autotransformer to 105 V ac. Frequency counter will indicate within ± 0.2 Hz of recorded value in (4) above.

- (7) Adjust autotransformer to 115 V ac.
- (8) Reduce outputs to minimum and disconnect equipment setup.
- b. Adjustments. No adjustments can be made.

9. Frequency Accuracy

a. Performance Check

(1) Connect equipment as shown in figure 2.

Figure 2. Frequency accuracy equipment setup.

- (2) Set frequency counter controls to measure frequency with 50 Ω input.
- (3) Press TI pushbuttons as listed in (a) through (d) below:
 - (a) **Preset**.
 - (b) **Frequency**, 2, 5, 0, [kHz].
 - (c) Amplitude, 0, [dBm].
 - (d) $\mathbf{RF} \mathbf{On}/\mathbf{Off}$ to on.
- (4) Frequency counter will indicate within limits specified in first row of table 3.

(5) Repeat technique of (3) (b) above for remaining frequencies listed in table 3. Frequency counter will indicate within limits specified in table 3.

Table 3. Frequency Accuracy					
Test instrument Frequency		Frequency counter indications			
		Min		Max	
250	kHz	249.999975	kHz	250.000025	kHz
500	kHz	499.99995	kHz	500.00005	kHz
1	MHz	.99999999	MHz	1.0000001	MHz
5	MHz	4.999995	MHz	5.0000005	MHz
10	MHz	9.999999	MHz	10.000001	MHz
50	MHz	49.999995	MHz	50.000005	MHz
100	MHz	99.99999	MHz	100.00001	MHz
500^{1}	MHz	499.99995	MHz	500.00005	MHz
1	GHz	.9999999	GHz	1.0000001	GHz
2	GHz	1.9999998	GHz	2.000002	GHz
3	GHz	2.9999997	GHz	3.0000003	GHz
4	GHz	3.9999996	GHz	4.0000004	GHz

T-1-9 E ٨

¹Replace frequency counter with microwave frequency counter.

- (6) Reduce outputs to minimum and disconnect equipment setup.
- **b.** Adjustments. No adjustments can be made.

10. RF Output

a. Performance Check

NOTE

If necessary, perform measuring receiver and sensor module (11792A) ZERO and CALIBRATE.

- (1) Set measuring receiver as listed in (a) through (d) below:
 - (a) Press **INSTR PRESET** pushbutton.
 - (b) Press **RF POWER** pushbutton.
 - (c) Press LOG/LIN to LOG (dBm) pushbutton.
 - (d) Enter **32.0 SPCL** (0.01 dB resolution).

(2) Connect sensor module (11722A) to TI RF OUTPUT and TI 10 MHz OUT (rear panel) to measuring receiver TIME BASE 10 MHz INPUT (rear panel).

(3) Press TI pushbuttons as listed in (a) through (d) below:

- (a) **Preset**.
- (b) **Frequency**, **1**, **0**, **0**, **[MHz]**.
- (c) Amplitude, 7, [dBm].
- (d) **RF On/Off** to on.

(4) Using measuring receiver and RF power measurement techniques, measuring receiver will indicate within limits specified in first row of table 4.

(5) Repeat technique of (3) (c) above, using the amplitude level and indications listed in table 4. TI will indicate within limits specified in table 4.

		Measuring receiver			
Test instrument		indications			
Amp	litude	(d	B)		
le	vel	Min	Max		
7	dBm	6.5	7.5		
5	dBm	4.5	5.5		
0	dBm^1	-0.5	0.5		
-10	dBm	-10.5	-9.5		
-20	dBm	-20.5	-19.5		
-30	dBm	-30.5	-29.5		
-40	dBm	-40.5	-39.5		
-50	dBm	-50.5	-49.5		
-60	dBm	-60.5	-59.5		
-70	dBm	-70.5	-69.5		
-80	dBm	-80.5	-79.5		
-90	dBm	-90.5	-89.5		
-100	dBm	-100.5	-99.5		
-110	dBm	-110.5	-109.5		

Table 4. 100 MHz RF Output

¹Setup measuring receiver for tuned RF level cal techniques and calibrate. Recal as necessary.

(6) Set TI **RF OUTPUT** to off and disconnect sensor module (11722A). On measuring receiver exchange sensor module (11792A) for (11722A) and connect sensor module (11792A) to TI **RF OUTPUT**.

(7) Press TI pushbuttons as listed in (a) through (d) below:

- (a) **Preset**.
- (b) Frequency, 3, [GHz].
- (c) Amplitude, 7, [dBm].
- (d) **RF On/Off** to on.

(8) Using measuring receiver and RF power measurement techniques, measuring receiver will indicate within limits specified in first row of table 5.

(9) Repeat technique of (7) (c) above, using the amplitude level and indications listed in table 5. TI will indicate within limits specified in table 5.

(10) Reduce all outputs to minimum and disconnect equipment setup.

b. Adjustments. No adjustments can be made.

Table 5.	5 GHZ IIF Outpu	ι.	
	Measuring receiver		
Test instrument	indications		
Amplitude	(d	B)	
level	Min	Max	
7 dBm	6.1	7.9	
5 dBm	4.1	5.9	
$0 dBm^1$	-0.9	0.9	
-10 dBm	-10.9	-9.1	
-20 dBm	-20.9	-19.1	
-30 dBm	-30.9	-29.1	
-40 dBm	-40.9	-39.1	
-50 dBm	-50.9	-49.1	
-60 dBm	-60.9	-59.1	
-70 dBm	-70.9	-69.1	
-80 dBm	-80.9	-79.1	
-90 dBm	-90.9	-89.1	
-100 dBm	-100.9	-99.1	
-110 dBm	-110.9	-109.1	

Table 5. 3 GHz RF Output

 $^1\!Setup$ measuring receiver for tuned RF level cal techniques and calibrate. Recal as necessary.

11. Spectral Purity

a. Performance Check

(1) Connect spectrum analyzer **INPUT 50** Ω to TI **RF OUTPUT**.

(2) Connect TI **10 MHz OUT** (rear panel) to spectrum analyzer **10 MHz REF IN** (rear panel).

- (3) Press TI pushbuttons as listed in (a) through (d) below:
 - (a) **Preset**
 - (b) **Frequency**, 2, 5, 0, [kHz].
 - (c) Amplitude, 4, [dBm].
 - (d) **RF On/Off** to on.

(4) Set spectrum analyzer controls as listed in (a) through (g) below:

- (a) **Preset**.
- (b) AMPLITUDE, [Ref Level], 4, [dBm].
- (c) FREQUENCY, [Center Freq], 2, 5, 0, [kHz].
- (d) **BW/Avg**, **[Res BW]**, 1, 0, **[kHz]**.
- (e) [Video BW], (Auto).
- (f) **SPAN**, 1, **[MHz]**.
- (g) Marker, [Off].

(5) Allow display to sweep a few times then set spectrum analyzer controls as listed in (a) through (d).

- (a) **Peak Search**.
- (b) Marker \rightarrow , [Mkr \rightarrow CF].
- (c) Marker, [Delta].
- (d) **FREQUENCY**, **[Center Freq]**, (harmonic frequency listed in table 6) **[MHz]**.

(6) Spectrum analyzer **Mkr1** will indicate less than dBc limit listed in first row of table 6.

(7) Set TI frequency and spectrum analyzer center frequency to next frequency listed in table 6 and repeat (4) (g) through (6) above.

(8) Repeat (7) above for remaining frequencies listed in table 6. Spectrum analyzer **Mkr1** will indicate less than dBc limit listed in table 6.

Table 6. Harmonics					
Tes	st instrument	Spectrum analyzer			
DATA ENTRY	DATA ENTRY	Harmonic			
level	frequency	frequency			
(dBm)	(MHz)	(MHz)	Harmonic number	dBc	
4	.250	.500	2^{d}	<-30	
4	.250	.750	3d	<-30	
4	.500	1.00	2^{d}	<-30	
4	.500	1.50	3d	<-30	
4	1	2	2^{d}	<-30	
4	1	3	3^d	<-30	
4	166.666665	333.333330	2^{d}	<-30	
4	166.666665	499.999995	3^d	<-30	
4	250	500	2^{d}	<-30	
4	333.333335	666.666670	2^{d}	<-30	
4	333.333335	1000.000005	3^d	<-30	
4	500	1000	2^{d}	<-30	
4	2000	1000	.5	<-30	
4	2000	4000	2^{d}	<-30	
4	3000	1500	.5	<-30	
4	3000	6000	2^{d}	<-30	
4	4000	2000	.5	<-30	
4	4000	8000	2^{d}	<-30	

Table 6. Harmonics

(9) Press TI pushbuttons as listed in (a) through (d) below:

(a) **Preset**.

- (b) Frequency, 1, [MHz].
- (c) Amplitude, 4, [dBm].
- (d) **RF On/Off** to on.

(10) Using spectrum analyzer, verify that all non-harmonic spurious signals are less than dBc limit listed in first row of table 7.

(11) Repeat (9) (b) and (10) for remaining frequencies listed in table 7.

Test instrument		Spectrum analyzer	
Amplitude	Frequency	Spurious signal	
(dBm)	(MHz)	level	
4	1 MHz	<-65 dBc	
4	5 MHz	<-65 dBc	
4	10 MHz	<-65 dBc	
4	50 MHz	<-65 dBc	
4	100 MHz	<-65 dBc	
4	200 MHz	<-65 dBc	
4	500 MHz	<-65 dBc	

Table 7. Spurious Signals

- (12) Reduce all outputs to minimum and disconnect equipment setup.
- **b.** Adjustments. No adjustments can be made.

12. Pulse Modulation

a. Performance Check

(1) Connect equipment as shown in figure 3.

Figure 3. Pulse modulation on/off ratio equipment setup.

- (2) Press pulse generator pushbuttons for a pulse output as listed in (a) through (h) below:
 - (a) CHANNEL A.
 - (b) Period and enter 10m/kHz from data keyboard.
 - (c) Width and enter 5 m/kHz from data keyboard.
 - (d) Vhigh and select 5, Enter/Hz from data keyboard.
 - (e) Vlow and select 0, Enter/Hz from data keyboard.
 - (f) **Delay** and select **0**, **n/GHz** from data keyboard.
 - (g) 2 Pulse and press Enter/Hz from data keyboard to ensure an OFF indication.
 - (h) On 9211 output module, disable (red light extinguished).
- (3) Press TI pushbuttons as listed in (a) through (f) below:

- (a) **Preset**.
- (b) Frequency, 1, [GHz].
- (c) **Amplitude**, 1, 0, [dBm].
- (d) MENUS Pulse, [Pulse Source], [EXT2 DC-Coupled].
- (e) **[Pulse Off On]** to On.
- (f) **RF On/Off** to RF on.
- (4) Press spectrum analyzer pushbuttons as listed in (a) through (d) below:
 - (a) **Preset**.
 - (b) AMPLITUDE, [Ref Level], 1, 0, [dBm].
 - (c) FREQUENCY, [Center Freq], 1, [GHz].
 - (d) **SPAN**, **1**, **.**, **5**, **[MHz]**.
- (5) Press spectrum analyzer pushbuttons as listed in (a) through (j) below:
 - (a) **BW Avg**, **[Res BW]**, 1, 0, 0, **[kHz]**.
 - (b) **[Video BW]**, 1, **[kHz]**.
 - (c) MARKER.
 - (d) SPAN, 0, [Hz].
 - (e) **Sweep**, **[Sweep Time]**, **3**, **0**, **[ms]**.
 - (f) **Trig**, **[Video]**, 1, 0, **[-dBm]**.
 - (g) Marker.
 - (h) Using rotary knob, adjust marker to top of square wave.
 - (i) Marker, [Delta].
 - (j) Using rotary knob, adjust delta marker to bottom of square wave.

(6) Using spectrum analyzer, measure top to bottom of square wave in dB. Pulse on/off ratio will indicate within limits specified in table 8.

(7) Set TI frequency and spectrum analyzer center frequency to 3.5 GHz.

(8) Repeat technique of (5) (g) through (6) above. Pulse on/off ratio will indicate within limits specified in table 9.

(9) Reduce all outputs to minimum and disconnect equipment setup.

b. Adjustments. No adjustments can be made.

13. Amplitude Modulation

a. Performance Check

(1) Connect equipment as shown in figure 4.

Figure 4. AM equipment setup.

- (2) Press TI pushbuttons as listed in (a) through (g) below:
 - (a) **Preset**.
 - (b) Frequency, 1, [GHz].
 - (c) Amplitude, 0, [dBm].
 - (d) MENUS AM, [AM Depth], 3, 0, [%].
 - (e) **[AM Rate]**, 1, 0, **[kHz]**.
 - (f) **[AM Off/On]** to on.
 - (g) **RF On/Off** to on.

(3) Set measuring receiver to measure AM with 15 kHz low-pass filter and a 300 Hz high-pass filter.

(4) Using measuring receiver, measure AM percent of modulation. Measuring receiver will indicate within limits specified in first row of table 10.

(5) Repeat technique of (2) (d) and (4) above using the AM Depth and measuring receiver indications listed in table 10. TI will indicate within limits specified in table 10.

Table 10. Internal AM Modulation Accuracy				
Test instrument	Measuring receiver modulation indications (%)			
(%)	Min	Max		
30%	27.2	32.8		
60%	55.4	64.6		
90%	83.6	96.4		

Table 10 Internal AM Madaletter A

(6) Press TI [AM Depth], 3, 0, [%]. Using audio analyzer, measure AM distortion. Audio analyzer will indicate within limit specified in table 11.

Table 11. Internal AM Modulation Distortion				
Test instrument	Audio analyzer			
AM Depth	distortion indications			
	(<%)			
30%	1.5			

(7) Reduce all outputs to minimum.

b. Adjustments. No adjustments can be made.

14. Frequency Modulation

- a. Performance Check
 - (1) Press TI pushbuttons as listed in (a) through (g) below:
 - (a) **Preset**.
 - (b) Frequency, 2, 5, 0, [MHz].
 - (c) Amplitude, 0, [dBm].
 - (d) MENUS FM/ΦM, [FM Rate], 1, [kHz].
 - (e) **[FM Dev]**, 5, 0, **[kHz]**.
 - (f) **[FM Off On]** to FM on.
 - (g) **RF On/Off** to RF on.

(2) Set up measuring receiver to measure FM with a + PEAK detector, no high-pass filter and no low-pass filter.

- (3) Set up audio analyzer to measure distortion with a slow detecting noise rejecting filter.
- (4) Audio analyzer will indicate within limits specified in table 12.

Table 12. FM Audio Distortion				
Audio analyzer				
distortion indication				
(%)				
< 1%				

(5) Press TI Frequency, [FM Rate], and [FM Dev] keys for values listed in table 13. Using measuring receiver, measure FM deviation. Measuring receiver will indicate within limits specified in table 13.

	Testingtownert	Measuring receive	er indication limits	
	Test instrument			12)
Frequency	FM Rate	FM Dev		
(MHz)	(kHz)	(kHz)	Min	Max
2500	1	300	289.48	310.52
1500	1	100	96.48	103.52
500	1	50	48.23	51.77
250	1	25	24.105	25.895
100	1	50	48.23	51.77

Table 13. FM Deviation

- (6) Reduce all outputs to minimum.
- **b.** Adjustments. No adjustments can be made.

15. Phase Modulation

a. Performance Check

- (1) Press TI pushbuttons as listed in (a) through (g) below:
 - (a) **Preset**.
 - (b) **Frequency**, **1**, **0**, **[MHz]**.
 - (c) Amplitude, 1, 0, [dBm].
 - (d) FM/ΦM, [FM/ΦM], (highlight [ΦM]), [ΦM Rate], 1, [kHz].
 - (e) **[ΦM Dev]**, 9, 0, **[rad]**.
 - (f) **[ΦM Off On]** to on.
 - (g) **RF On/Off** to RF on.

(2) Set measuring receiver to measure PM with a + PEAK detector, 15 kHz low-pass filter and a 300 Hz high-pass filter.

(3) Using measuring receiver, measure phase modulation. Measuring receiver phase modulation indication will be within limits specified in first row of table 14.

(4) Repeat technique of (1) (b) and (e) above using the TI frequency and ΦM dev settings and measuring receiver indications listed in table 14. TI will indicate within limits specified in table 14.

Table 14. PM accuracy						
Test instrument		Test instrument		Measuring receiver phase		
Frequency		ΦM Dev		modulation indications (rad)		
				Min	Max	
10	MHz	90	rad	85.49	94.51	
500	MHz	45	rad	42.74	47.26	
1	GHz	90	rad	85.49	94.51	
2	GHz	180	rad	170.99	189.01	
4	GHz	360	rad	341.99	378.01	

Table 14. PM accuracy

- (5) Press TI pushbuttons as listed in (a) through (g) below:
 - (a) **Preset**.

- (b) **Frequency**, **1**, **0**, **[MHz]**.
- (c) **Amplitude**, 1, 0, [dBm].
- (d) FM/ΦM, [FM/ΦM], [ΦM], [ΦM Rate], 1, [kHz].
- (e) **[ΦM Dev]**, 9, 0, **[rad]**.
- (f) **[ΦM], [ΦM Off On]** to on.
- (g) **RF On/Off** to RF on.

(6) Using audio analyzer, measure the audio distortion. Distortion will indicate within limits specified in first row of table 15.

(7) Repeat technique of (5) (b) and (e) above using the TI frequency and ΦM dev settings and audio analyzer indications listed in table 15. TI will indicate within limits specified in table 15.

Table 19. Mullo Distortion at 1 Mill Modulation Trequency					
Test instrument	Test instrument	Audio analyzer			
DATA	DATA	distortion indications			
carrier frequency	phase modulation	(< %)			
10 MHz	90 rad	1			
500 MHz	45 rad	1			
1 GHz	90 rad	1			
2 GHz	180 rad	1			
4 GHz	360 rad	1			

Table 15. Audio Distortion at 1 kHz Modulation Frequency

- (8) Reduce all outputs to minimum.
- b. Adjustments. No adjustments can be made.

16. Final Procedure

- a. Deenergize and disconnect all equipment.
- b. Annotate and affix DA label/form in accordance with TB 750-25.

By Order of the Secretary of the Army:

Official

PETER J. SCHOOMAKER General, United States Army Chief of Staff

Sandra R. Riley SANDRA R. RILEY Administrative Assistant to the Secretary of the Army

0512905

Distribution:

To be distributed in accordance with the initial distribution number (IDN) 344814, requirements for calibration procedure TB 9-6625-2363-35.

Instructions for Submitting an Electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" <u>whomever@redstone.army.mil</u> To: <2028@redstone.army.mil

Subject: DA Form 2028

- 1. From: Joe Smith
- 2. Unit: home
- 3. **Address**: 4300 Park
- 4. City: Hometown
- 5. St: MO
- 6. Zip: 77777
- 7. Date Sent: 19-OCT –93
- 8. **Pub no:** 55-2840-229-23
- 9. Pub Title: TM
- 10. Publication Date: 04-JUL-85
- 11. Change Number: 7
- 12. Submitter Rank: MSG
- 13. Submitter FName: Joe
- 14. Submitter MName: T
- 15. Submitter LName: Smith
- 16. Submitter Phone: 123-123-1234
- 17. **Problem**: 1
- 18. Page: 2
- 19. Paragraph: 3
- 20. Line: 4
- 21. NSN: 5
- 22. Reference: 6
- 23. Figure: 7
- 24. Table: 8
- 25. Item: 9
- 26. Total: 123
- 27. Text

This is the text for the problem below line 27.